An Unsupervised Iterative Method for Chinese New Lexicon Extractio

نویسندگان

  • Jing-Shin Chang
  • Keh-Yih Su
چکیده

An unsupervised iterative approach for extracting a new lexicon (or unknown words) from a Chinese text corpus is proposed in this paper. Instead of using a non-iterative segmentation-mergingfiltering-and-disambiguation approach, the proposed method iteratively integrates the contextual constraints (among word candidates) and a joint character association metric to progressively improve the segmentation results of the input corpus (and thus the new word list.) An augmented dictionary, which includes potential unknown words (in addition to known words), is used to segment the input corpus, unlike traditional approaches which use only known words for segmentation. In the segmentation process, the augmented dictionary is used to impose contextual constraints over known words and potential unknown words within input sentences; an unsupervised Viterbi Training process is then applied to ensure that the selected potential unknown words (and known words) maximize the likelihood of the input corpus. On the other hand, the joint character association metric (which reflects the global character association characteristics across the corpus) is derived by integrating several commonly used word association metrics, such as mutual information and entropy, with a joint Gaussian mixture density function; such integration allows the filter to use multiple features simultaneously to evaluate character association, unlike traditional filters which apply multiple features independently. The proposed method then allows the contextual constraints and the joint character association metric to enhance each other; this is achieved by iteratively applying the joint association metric to truncate unlikely unknown words in the augmented dictionary and using the segmentation result to improve the estimation of the joint association metric. The refined augmented dictionary and improved estimation are then used in the next iteration to acquire better segmentation and carry out more reliable filtering. Experiments show that both the precision and recall rates are improved almost monotonically, in contrast to non-iterative segmentation-merging-filtering-and-disambiguation approaches, which often sacrifice precision for recall or vice versa. With a corpus of 311,591 sentences, the performance is 76% (bigram), 54% (trigram), and 70% (quadragram) in F-measure, which is significantly better than using the non-iterative approach with F-measures of 74% (bigram), 46% (trigram), and 58% (quadragram).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning of a Chinese Spontaneous and Colloquial Speech Lexicon with Content and Filler Phrase Classification

There is significant lexical difference—words and usage of words-between spontaneous/colloquial language and the written language. This difference affects the performance of spoken language recognition systems that use statistical language models or context-free-grammars because these models are based on the written language rather than the spoken form. There are many filler phrases and colloqu...

متن کامل

Lexicon Optimization for Chinese Language Modeling

In this paper, we present an approach to lexicon optimization for Chinese language modeling. The method is an iterative procedure consisting of two phases, namely lexicon generation and lexicon pruning. In the first phase, we extract appropriate new words from a very large training corpus using statistical approaches. In the second phase, we prune the lexicon to a preset memory limitation using...

متن کامل

Improved Chinese broadcast news transcription by language modeling with temporally consistent training corpora and iterative phrase extraction

In this paper an iterative Chinese new phrase extraction method based on the intra-phrase association and context variation statistics is proposed. A Chinese language model enhancement framework including lexicon expansion is then developed. Extensive experiments for Chinese broadcast news transcription were then performed to explore the achievable improvements with respect to the degree of tem...

متن کامل

Induction of Root and Pattern Lexicon for Unsupervised Morphological Analysis of Arabic

We propose an unsupervised approach to learning non-concatenative morphology, which we apply to induce a lexicon of Arabic roots and pattern templates. The approach is based on the idea that roots and patterns may be revealed through mutually recursive scoring based on hypothesized pattern and root frequencies. After a further iterative refinement stage, morphological analysis with the induced ...

متن کامل

Unsupervised Induction of a Syntax-Semantics Lexicon Using Iterative Refinement

We present a method for learning syntaxsemantics mappings for verbs from unannotated corpora. We learn linkings, i.e., mappings from the syntactic arguments and adjuncts of a verb to its semantic roles. By learning such linkings, we do not need to model individual semantic roles independently of one another, and we can exploit the relation between different mappings for the same verb, or betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJCLCLP

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1997